Preparation of 6-Deoxy-6,6,6=trifluoro-D-mannose and D-Allose from Enzymatically Resolved 2-Butenolides

Takashi Yamazaki; Kenji Mizutani, and Tomoya Kitazume*

Department of Bioengineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku,Yokohama 227, Japan

(Received 18 January 1993)

Abstract: Both 6-deoxy-6,6,6-trifluoro-o-mannose and D-allose, possessing a diastereomeric relationship, were conveniently prepared from trifluorinated 2butenolides, which was prepared via the enzymatic resolution with high efficiency.

6-Deoxy sugars are recognized as one of the most important ckiss of materials because a various type of *naturally* occurring antibiotics contain such sugars, which also play a significant role on their biological activities or stabilities.¹ On the other hand, in connection with the fact that introduction of fluorine(s) is the widely accepted strategy for the modification of biological activities, 2 many kinds of fluorine-containing sugars have been reported thus far, while most of them have been the ones possessing only one or two fluorines in their framework.³ This is mainly because such mono- or difluorosugars are relatively easy to be obtained through the well developed fluorination methodology by employing such a reagent as $DAST⁴(Et₂NSF₃)$ for the transformation of a carbonyl group (ketones or aldehydes) to difluoromethylene or difluoromethyl groups, respectively, or alkaline metal fluorides⁵ for the preparation of monofluorinated compounds via, for example, the corresponding tosylates in a high degree of retention of stereochemistry. However, the conesponding trifluorometbyl analogs have been rare in the literature.⁶ which might stem from the fact that there are no convenient method for their construction in stereo- as well as chemoselective manners. Our basic strategy to prepare compounds with this group is the employment of the appropriately functionalized chiral building blocks, $\overline{7}$ and here, during our continuing study, the authors would like to describe our result for the preparation of 6-deoxy-6,6,6-trifluoro-pmannose and p-allose from the same starting material, trifluorinated 2-butenolide *anti*-3 obtained from the corresponding furanol 2 by highly efficient enzymatic resolution. 8

The key intermediate in the present study, 2-butenolide *anti* -3^8 was prepared as shown in Scheme 1. The asymmetric transformation of rac-1 by lapse PS (Amano Pharmaceutical Co., Japan) showed its E value of 189, suggesting the very effective optical resolution. Thus, at 50% conversion, 50% (98% ee) of (S) -2 and 48% (94% ee) of **(IQ-1 were** obtained after silica gel chromatography. The former was silylated as usual (93% yield) and was further oxidized by the modified Kuwajima-Urabe procedure⁹ to furnish the desired trifluoromethylated 2-butenolide 3 as a 1:1 diastereomer mixture. For the purpose of obtaining one of the either isomer selectively, this mixture (syn- and anti-3) was subjected under the basic conditions (treated with LDA at -78 $^{\circ}$ C, followed by quenching the reaction mixture by acetic acid) to be successfully epimerized at their y-position and 84% of *anti-selectivity* was attained (89% yield). Another important material, anti-4, was also produced by oxidation with potassium permanganate in the presence of a catalytic amount of 18 -crown-6¹⁰ with excellent diastereoselectivity¹¹ (42% yield with recovery of 33% of *anti*-3). This would be the reflection of the effective shielding of the butenolide ring by such a sterically demanding substituent as 1-t-butyldimethylsiloxy-2,2,2-trifluoroethyl group.

The access to the CF3 analog of D-allose from *anti-4 was* realized by the ready three-step process. Thus,

a) lipase PS, b) TBSCI, imidazole, c) MMPP / AcOH, d) KMnO₄, cat. 18-crown-6 e) $Me₂C(OM₄)₂$, H⁺, f) DIBALH, g) KOBu⁻¹, h) K₂CO₃, MeOH

protection of diol function of *anti*-4 as its acetonide followed by the DIBALH reduction furnished *anti*-5, which was then subjected to the previously reported base-promoted isomerization conditions (Scheme 2).¹² The driving force of this process is assumed to be the difference of the alkoxide stability between Int-B and Int-C, the latter being more favorable dife to the effect of the strongly electron withdrawing CF₃ group and eventually recyclized to be converted to **Int-Il** The sequence shown in Scheme 1 transformed *anti-5* into a mixture of the desired product **anti-6**,¹³) starting material **anti-5**, and another type of TBS migration product **anti-7** in 35, 46, and 17% yield, respectively! The lower yield might be explained by the rigidity of the molecule due to the fused

Scheme₂

acetonide five-membered ring prohibiting the smooth ring opening (see, for example, the step from Int-A to Int-B in Scheme 2) , which is in sharp contrast to the previous cases observed for the preparation of n-amicetose and D-rhodinose with a CF₃ moiety. In spite of the lower conversion, since each product was easily separated by silica gel column chromatography, the recovered *anti*-5 could be again subjected to the same reaction conditions.

On the other hand, the preparation of 6-deoxy-6,6,6-trifluoro-p-mannose requires dihydroxylation from the opposite olefinic face. Prom the mechanistic consideration, this might be solved by simply changing the order of dihydroxylation and isomerization steps: thus, if the transformation of anti-3 into anti-8 is successful, then a bulky TBSO moiety would cover the β-face of the latter and the proximity of potassium permanganate to the less hindered α -face could realize the construction of the desired stereostructure (Scheme 3).

This hypothesis was in fact verified as depicted in Scheme 3. DIBALH reduction of **anti-3** followed by the action of KOBu^{-t} effected the isomerization to furnish **anti-8** in 63% yield along with the lactol from **anti-** 3^{14} (33% yield). After separation and derivatization into methyl glycoside, permanganate oxidation has led to a stereochemically pure diol as our expectation (55% yield and 14% of recovery) and the product was isolated as the diacetate form (anti-9). Desilylation of anti-9 afforded anti-10 (62%) along with a mixture of unidentified materials. The fact that this mixture and **anti-10**, after separation, were acetylated to produce the same compound $anti-11^{13}$ allowed us to speculate that the above unknown mixture was consisted from regioisomeric acetates as described in Scheme 3 (92% total yield for the depxotection-acetylation steps).

The present work describes the novel and easy pathway to access both trifluoromethylated 6.deoxy-D mannose (p-rhamnose) and p-allose in a highly stereoselective manner via the base-promoted TBS migration as the key step. The preparation of other deoxy-6,6,6-trifluorinated sugars are in progress in our laboratory, whose results as well as the full detail of this work will be published elsewhere.

a) DIBALH, b) $KOBu^{-1}$, c) MeOH, H⁺, d) $KMnO_4$, cat. 18-crown-6, e) Ac20, pyr, f) TBAF

Scheme 3

References

- 1) *Bioactive Carbohydrates in Chemistry, Biochemistry, and Biology,* Kennedy, J. F.; White, C. A., Eds.; Ellis Horwood: Chichester, 1983; Chapter 12.
- 2) a) Welch, J. T.; Eswarakrishnan, S. *Fluorine in Bioorganic Chemistry,* John Wiley & Sons: New York, 1991. b) Welch, J. T. *Tetrahedron* 1987, *43,* 3123-3197. c) Filler, R.; Kobayashi, Y. *Biomedical Aspects of Fluorine ~hemistry;* Kodansha & Elsevier Biomedical: Tokyo, 1982.
- 3) For a review, see a) Tsuehiya, T. *Adv. Carbohydr. Chem. Biochem.* 1990, *48,* 91-277. b) *Fluorinated Carbohydrates Chemical and Biochemical Aspects* (ACS symposium Series No. 374), Taylor, N. F., Ed; ACS: Washington, D. C., 1988.
- 4) Hudlicky, M. *Org. React.* 1988, *35,* 513-637.
- 5) Shafts, C. M.; Sheppard, W. A. *Org. React.* 1974, *21,* 125-406.
- 6) a) Bansal, R. C.; D~an, B.; Hakomori, S.; Toyokuni, *T. J. Chem. Soc., Chem. Commun.* 1991, 796- 798. b) Hanzawa, Y.; Uda, J.; Kobayashi, Y.; Ishido, Y.; Taguchi, T.; Shim, M. *Chem. Pharm. Bull.* 1991, 39, 2459-2461. c) Differding, E.; Frick, W.; Lang, R. W.; Martin, P.; Schmit, C.; Veenstra, S.; Greuter, H. *Bull. Soc. Chim. Berg.* 1990, 99, 647-671.
- 7) a) Kitazume, T.; Yamazaki, T. In *Selective Fluorination in Organic and Bioorganic Chemistry* (ACS Symposium Series No. 456), Welch, J. T., Ed.; ACS, Washington, D. C., 1991, Chapter 12. b) Yamazaki, T.; Haga, J.; Kitazume, T. *Chem. Lett.* **1991**, 2175-2178. c) Yamazaki, T.; Okamura, N.; Kitazume, T. *Tetrahedron : Asymmetry 1990, 1,521-524.*
- 8) Yamazaki, T.; Mizutani, K.; Takeda, M.; Kitazume, T. J. Chem. Soc., Chem. Commun. 1992, 55-57. Some figures in this communication were incorrectly drawn. *See, J. Chem. Soc., Chem. Commun.* 1992, 796 on their correction. The full detail will be also published elsewhere.
- 9) Kuwajima, I.; Urahe, H. *Tetrahedron Leu.,* 1981, *22,* 5191-5194.
- 10) Mukaiyama, T.; Tabusa, F.; Suzuki, K. *Chem. Lett.* **1983**, 173-174.
- 11) Only one isomer with the depicted stereochemistry was obtained.
- 12) For the related silyl migration reactions, see the following, a) Mulzer, J.; SchOllhorn, B. *Angew. Chem. Int. Ed. Engl.* **1990**, 29, 431-432 (with a t-butyldiphenylsilyl group). b) Jones, S. S.; Reese, C. B. J. *Chem. Soc. Perkin Trans. 1* 1979, 2762-2764 (with a *t*-butyldimethylsilyl group). See also, Watanabe, Y.; Fujimoto, T.; Qzaki, S. J. Chem. Soc., Chem. Commun. **1992**, 681-683.
- 13) *anti*-6: mp 87.5-88.0 °C. ¹H NMR δ 0.08 and 0.11 (3 H each, s, Si(CH₃)₂), 0.88 (9 H, s, C(CH₃)₃), 1.33 and 1.50 (3 H each, s, $C(CH_3)$), 3.26 (1 H, d, $J = 3.85$ Hz, OH), 4.12 and 4.43 (1 H each, dd and m, $J = 3.12$, 6.80 Hz, CHCHCHOH), 4.16 (1 H, dq, $J = 8.60$, 7.21 Hz, CF₃CH), 4.47 (1 H, dd, $J = 2.75$, 8.51 Hz, CF₃CHCH), 5.02 (1 H, t, $J = 3.45$ Hz, CHOCH₃). ¹³C NMR δ -4.99 and -4.70 (s each, Si(CH₃)₂), 18.02 (s, C(CH₃)₃), 24.84 and 26.78 (s each, C(CH₃)₂), 25.61 (s, C(CH₃)₃), 64.47, 74.17, and 76.08 (s each, CHCHCHCHOCH₂), 71.12 (q, $J = 29.6$ Hz, CF₃CH), 93.98 (s, CHOCH₃), 112.50 (s, $C(CH_3)_{p}$), 123.53 (q, J = 281.8 Hz, CF_3). ¹⁹F NMR δ 4.2 (d, J = 6.2 Hz). IR (KBr) v 3400, 3000, 2950, 2900, 2875. HRMS calcd for CIsH28F3OsSi *role* (M+H) 373.1658, found 373.1660. *anti*-11: R_f 0.49 (AcOEt:Hex = 1:2). ¹H NMR δ 2.01, 2.05, and 2.17 (3 H each, s, $C(O)CH₃$), 3.47 (3 H, s, $OCH₃$), 4.15 (1 H, ddq, J = 0.59, 9.83, 6.00 Hz, CF₃CH), 4.81 (1 H, d, J = 1.84 Hz, CHOCH₄), 5.24 (1 H, dd, J = 1.79, 3.36 Hz, CHCHOCH₃), 5.35 (1 H, dd, J = 3.40, 9.93 Hz, CHCHCHOCH₃), 5.54 (1 H, t, $J = 9.84$ Hz, CF₃CHCH). ¹³C NMR δ 20.51, 20.63, and 20.83 (s each, C(O)CH₃), 55.89 (s, OCH₃), 64.04, 68.33, and 68.84 (s each, CF₃CHCHCHCH), 68.33 (q, J = 31.3 Hz, CF₃CH), 98.68 (s, CHOCH₃), 123.32 (q, $J = 280.3$ Hz, CF₃), 169.16, 169.82, and 170.04 (s each, $C=O$). ¹⁹F NMR δ 5.4 (d, $J = 6.9$ Hz). IR (neat) v 2950, 2850, 1765, 1750. HRMS calcd for $C_{13}H_{18}F_{2}O_{8}$ m/e (M+H) 359.0953, found 359.0977.
- 14) The lactol from **anti-3** itself could not be recovered because of its unstable nature under the isolation
conditions, giving furan shown in the right. F_3C
 F_3C because of its unstable nature under the isolation conditions, giving furan shown in the right.

